Statistische Rechner
Abweichungsrechner

Abweichungsrechner

Bei einem diskreten Datensatz, der eine Stichprobe oder eine Grundgesamtheit darstellt, berechnet der Rechner den Mittelwert, die Varianz und die Standardabweichung und zeigt den an der Berechnung beteiligten Arbeitsablauf an.

Probe Bevölkerung
Varianz σ2 = 28.5 s2 = 24.9375
Standardabweichung σ = 5.3385 s = 4.9937
Zählen n = 8 n = 8
Bedeuten μ = 18.25 x̄ = 18.25
Quadratsumme SS = 199.5 SS = 199.5

Bei Ihrer Berechnung ist ein Fehler aufgetreten.

Inhaltsverzeichnis

  1. Varianz als Variabilitätsmaß
  2. Die Regeln für die Verwendung dieses Rechners
  3. Die Formel für die Varianz: Bevölkerungsvarianz vs. Stichprobenvarianz
    1. Varianz der Bevölkerung
    2. Stichprobenvarianz
  4. Schritte zur Berechnung der Varianz
  5. Beispiel für die Berechnung der Varianz einer Stichprobe
  6. Die Bedeutung der Varianz

Abweichungsrechner

Varianz als Variabilitätsmaß

Einer der grundlegenden Aspekte der statistischen Inferenz eines gegebenen Datensatzes ist die Messung einer Metrik, die die Variabilität der Daten gegenüber ihrem Durchschnitt charakterisiert. Die beliebtesten Metriken zur Messung der Variabilität sind:

  • Die Varianz ist der Durchschnitt der quadrierten Abweichungen vom Mittelwert.
  • Standardabweichung - ist die Quadratwurzel der Varianz. Die Standardabweichung ist eine häufig verwendete Metrik zur Messung der Streuung/Variabilität.
  • Der Variationskoeffizient, der auch als relative Standardabweichung bezeichnet wird. Der Variationskoeffizient wird berechnet als das Verhältnis der Standardabweichung σ zum Mittelwert μ oder \$(C_v=\frac{σ}{μ})\$.

Dieser Rechner ermittelt die Varianz eines gegebenen Datensatzes und zeigt die einzelnen Schritte der Berechnung an.

Die Regeln für die Verwendung dieses Rechners

Der Varianzrechner akzeptiert die Eingabe als eine Liste von Zahlen, die durch ein Trennzeichen getrennt sind. Einige Beispiele für mögliche Eingaben sind in der nachstehenden Tabelle aufgeführt.

Zeileneingabe Spalteneingabe Spalteneingabe Spalteneingabe
44, 63, 72, 75, 80, 86, 87, 89 44 44, 44,63,72
44 63 72 75 80 86 87 89 63 63, 75,80
44,, 63,, 72, 75, 80, 86, 87, 89 72 72, 86,87
44 63 72 75, 80, 86, 87, 89 75 75, 89
44; 63; 72, 75,, 80, 86, 87, 89 80 80,
44,,, 63,, 72, 75, 80, 86, 87, 89 86 86,
44 63,, 72,,,, 75, 80, 86, 87, 89 87 87,
89 89,

Die Zahlen können durch ein Komma, ein Leerzeichen, einen Zeilenumbruch oder eine Mischung aus mehreren Begrenzungszeichen getrennt werden. Sie können entweder das Zeilen- oder das Spaltenformat verwenden. Bei allen in der obigen Tabelle aufgeführten Formaten verarbeitet der Rechner die Eingabe als 44, 63, 72, 75, 80, 86, 87 und 89.

Nach der Eingabe der Daten können Sie auswählen, ob es sich um Stichprobendaten oder Populationsdaten handelt. Wenn Sie auf die Schaltfläche "Berechnen" klicken, zeigt der Rechner fünf statistische Parameter des Datensatzes an: Anzahl (Anzahl der Beobachtungen), Mittelwert, Summe der quadrierten Abweichungen, Varianz und die Standardabweichung.

Der Rechner ist für die Berechnung der Varianz eines Datensatzes konzipiert. Er bietet auch einen Einblick in die Theorie, die hinter der Berechnung steht, und zeigt alle beteiligten Schritte.

Wenn man Schlussfolgerungen ziehen will, ist es besser, einen großen Datensatz zu verwenden, um gute Statistiken zu erhalten. Es ist jedoch oft schwierig, Bevölkerungsdaten zu erhalten, die alle möglichen Beobachtungen repräsentieren. Daher wird in der Regel eine "Stichprobe" aus der Grundgesamtheit gezogen. Aus den Stichprobendaten werden dann in der Regel Schlussfolgerungen über die Grundgesamtheit gezogen.

Die Varianz misst die durchschnittliche Streuung eines Datensatzes im Verhältnis zum Mittelwert. Sie wird häufig mit σ² für eine Grundgesamtheit und mit für eine Stichprobe bezeichnet. Ein größerer Wert von σ² oder impliziert eine größere Streuung der Datenpunkte vom Stichprobenmittelwert und umgekehrt.

Betrachten Sie die folgenden Beispieldatensätze.

(Satz I) 11, 3, 5, 21, 10, 15, 20, 25, 13, 26, 27,

(Satz II) 12, 14, 14, 15, 15, 16, 16, 17, 18, 19, 20

Wenn man Satz I in den Varianzrechner eingibt, erhält man:

n=11

x̄=16

SS=704

s²=70,4

s=8,39

für eine Probe, und

n=11

μ=16

SS=704

σ²=64

σ=8

für die Bevölkerung.

Wenn man Satz II in den Taschenrechner eingibt, erhält man das gleiche Ergebnis:

n=11

x̄=16

SS=56

s²=5,6

s=2,36

für eine Probe, und

n=11

μ=16

SS=56

σ²=5,09

σ=2,25

Für die Bevölkerung.

  • In Satz I wichen die Zahlen erheblich vom Mittelwert der Stichprobe ab

s²=70,4

σ²=64

  • In Satz II ist die Variabilität gering

s²=5,6

σ²=5,09

Die Formel für die Varianz: Bevölkerungsvarianz vs. Stichprobenvarianz

Varianz der Bevölkerung

Die Grundgesamtheit in der Statistik bezieht sich auf alle möglichen Beobachtungen in einem Experiment. Für N Beobachtungen ist die Varianz der Population gleich:

$$\sigma^2=\frac{\sum_{i}^{N}{{(x_i-\ \mu)}^2\ }}{N}$$

wobei

  • σ² ist die Bevölkerungsvarianz,
  • Σ ist die Summierung,
  • xᵢ ist jede Beobachtung,
  • μ ist der Mittelwert der Bevölkerung,
  • n ist die Anzahl der Beobachtungen in der Grundgesamtheit.

Stichprobenvarianz

Die Stichprobenvarianz ist definiert als

$$s^2=\frac{\sum_{i}^{n}{{(x_i-\ \bar{x})}^2\ }}{n-1}$$

wobei

  • ist die Stichprobenvarianz,
  • Σ ist die Summierung,
  • xᵢ ist jede Beobachtung,
  • ist der Stichprobenmittelwert,
  • n ist die Anzahl der Beobachtungen in der Stichprobe.

Schritte zur Berechnung der Varianz

Die folgenden Schritte sind bei der Berechnung der Varianz beteiligt.

Schritt 1: Berechnen Sie das arithmetische Mittel der Stichprobe/des Gesamtwertes. Dies ist die Summe aller Datenpunkte geteilt durch die Anzahl der Datenpunkte (n für eine Stichprobe und N für die Gesamtheit), das heißt,

Stichprobenmittelwert:

$$\bar{x}=\frac{\sum_{i=1}^{n} x_i}{n}$$

Gesamtmittelwert:

$$\mu=\frac{\sum_{i=1}^{N} x_i}{N}$$

Schritt 2: Berechnen Sie die Abweichungen, indem Sie das arithmetische Mittel der Stichprobe/des Gesamtwertes von jedem Datenpunkt subtrahieren, das heißt,

Abweichungen der Stichprobe:

$$(x_1-\bar{x}), (x_2-\bar{x}), (x_3-\bar{x}), \ldots, (x_n-\bar{x})$$

Abweichungen der Gesamtheit:

$$(x_1-\mu), (x_2-\mu), (x_3-\mu), \ldots, (x_N-\mu)$$

Schritt 3: Berechnen Sie die quadrierten Abweichungen für jeden Datenpunkt.

Quadrierte Abweichungen der Stichprobe:

$$(x_1-\bar{x})^2, (x_2-\bar{x})^2, (x_3-\bar{x})^2, \ldots, (x_n-\bar{x})^2$$

Quadrierte Abweichungen der Gesamtheit:

$$(x_1-\mu)^2, (x_2-\mu)^2, (x_3-\mu)^2, \ldots, (x_N-\mu)^2$$

Schritt 4: Berechnen Sie die Summe der quadrierten Abweichungen.

Summe der quadrierten Abweichungen der Stichprobe:

$$SS=\sum_{i=1}^{n}(x_i-\bar{x})^2$$

Summe der quadrierten Abweichungen der Gesamtheit:

$$SS=\sum_{i=1}^{N}(x_i-\mu)^2$$

Schritt 5: Teilen Sie die Summe der quadrierten Abweichungen durch n-1 für eine Stichprobe und N für die Gesamtheit, um die Varianz zu berechnen.

Varianz der Stichprobe:

$$s^2=\frac{SS}{n-1}$$

Varianz der Gesamtheit:

$$\sigma^2=\frac{SS}{N}$$

Beispiel für die Berechnung der Varianz einer Stichprobe

Betrachten wir den folgenden Datensatz: 1, 2, 4, 5, 6 und 12. Um die Stichprobenvarianz zu berechnen, folgen wir diesen Schritten:

Schritt 1: Berechnung des Stichprobenmittels (Durchschnitt).

$$\bar{x}=\frac{1+2+4+5+6+12}{6}=\frac{30}{6}=5$$

Schritt 2: Berechnung der Abweichungen vom Mittelwert für jeden Datenpunkt.

x₁-x̄ x₂-x̄ x₃-x̄ x₄-x̄ x₅-x̄ x₆-x̄
1 - 5 2 - 5 4 - 5 5 - 5 6 - 5 12 - 5
-4 -3 -1 0 1 7

Schritt 3: Berechnung der Quadrate der Abweichungen.

(x₁-x̄)² (x₂-x̄)² (x₃-x̄)² (x₄-x̄)² (x₅-x̄)² (x₆-x̄)²
16 9 1 0 1 49

Schritt 4: Summierung der quadrierten Abweichungen.

$$SS=\sum_{i=1}^{n}{(x_i-\bar{x})}^2=16+9+1+0+1+49=76$$

Schritt 5: Berechnung der Stichprobenvarianz, indem die Summe der quadrierten Abweichungen durch die Anzahl der Freiheitsgrade (n-1) geteilt wird.

$$s^2=\frac{SS}{n-1}=\frac{76}{6-1}=\frac{76}{5}=15,2$$

Für eine Population würden wir durch n (die Gesamtanzahl der Datenpunkte) statt durch n-1 teilen, um die Populationsvarianz zu berechnen.

Die Bedeutung der Varianz

Die Streuung wird bei Investitionen eingesetzt. Sie hilft Vermögensverwaltern, die Leistung ihrer Anlagen zu verbessern. Finanzanalysten können die Varianz nutzen, um die individuelle Leistung der Komponenten eines Anlageportfolios zu bewerten.

Investoren berechnen die Varianz, wenn sie einen neuen Kauf erwägen, um zu entscheiden, ob die Investition das Risiko wert ist. Die Streuung hilft Analysten, ein Maß für die Unsicherheit zu bestimmen, das ohne Varianz und Standardabweichung nur schwer zu quantifizieren ist.

Die Unsicherheit ist nicht direkt messbar. Aber die Varianz und die Standardabweichung (die Quadratwurzel der Varianz) helfen dabei, den wahrgenommenen Einfluss einer bestimmten Aktie auf ein Portfolio zu bestimmen.

Wissenschaftler, Statistiker, Mathematiker und Datenanalysten können die Varianz ebenfalls nutzen. Sie hilft, nützliche Informationen über ein Experiment oder eine Stichprobenpopulation zu erhalten.

Wissenschaftler können nach Unterschieden zwischen den Testgruppen suchen, um festzustellen, ob sie ähnlich genug sind, um eine Hypothese erfolgreich zu testen. Je höher die Varianz des Datensatzes ist, desto mehr streuen die Werte im Datensatz. Datenforscher können diese Information nutzen, um festzustellen, wie gut der Mittelwert den Datensatz repräsentiert.

Der Nachteil der Verwendung der Varianz ist, dass große Ausreißer in einem Satz zu einer gewissen Verzerrung der Daten führen können. Dies liegt daran, dass die Ausreißer ihr Gewicht nach der Quadrierung noch weiter erhöhen können.

Viele Forscher ziehen es vor, mit der Standardabweichung zu arbeiten, die als Quadratwurzel der Varianz berechnet wird. Die Standardabweichung wird weniger von Ausreißern beeinflusst, ist eine kleinere Zahl und lässt sich leichter interpretieren.